/// <summary>
        /// Adds a scaled vector to another: <c>result = y + alpha*x</c>.
        /// </summary>
        /// <param name="y">The vector to update.</param>
        /// <param name="alpha">The value to scale <paramref name="x"/> by.</param>
        /// <param name="x">The vector to add to <paramref name="y"/>.</param>
        /// <param name="result">The result of the addition.</param>
        /// <remarks>This is similar to the AXPY BLAS routine.</remarks>
        public virtual void AddVectorToScaledVector(Complex[] y, Complex alpha, Complex[] x, Complex[] result)
        {
            if (y == null)
            {
                throw new ArgumentNullException("y");
            }

            if (x == null)
            {
                throw new ArgumentNullException("x");
            }

            if (y.Length != x.Length)
            {
                throw new ArgumentException(Resources.ArgumentVectorsSameLength);
            }

            if (y.Length != x.Length)
            {
                throw new ArgumentException(Resources.ArgumentVectorsSameLength);
            }

            if (alpha.IsZero())
            {
                CommonParallel.For(0, y.Length, index => result[index] = y[index]);
            }
            else if (alpha.IsOne())
            {
                CommonParallel.For(0, y.Length, index => result[index] = y[index] + x[index]);
            }
            else
            {
                CommonParallel.For(0, y.Length, index => result[index] = y[index] + (alpha * x[index]));
            }
        }
Example #2
0
        public void IsOneTest()
        {
            Assert.IsFalse(a.IsOne());
            Complex one = new Complex(field, BigInt.ONE);

            Assert.IsTrue(one.IsOne());
        }
        /// <summary>
        /// Adds a scaled vector to another: <c>result = y + alpha*x</c>.
        /// </summary>
        /// <param name="y">The vector to update.</param>
        /// <param name="alpha">The value to scale <paramref name="x"/> by.</param>
        /// <param name="x">The vector to add to <paramref name="y"/>.</param>
        /// <param name="result">The result of the addition.</param>
        /// <remarks>This is similar to the AXPY BLAS routine.</remarks>
        public virtual void AddVectorToScaledVector(Complex[] y, Complex alpha, Complex[] x, Complex[] result)
        {
            if (y == null)
            {
                throw new ArgumentNullException("y");
            }

            if (x == null)
            {
                throw new ArgumentNullException("x");
            }

            if (y.Length != x.Length)
            {
                throw new ArgumentException(Resources.ArgumentVectorsSameLength);
            }

            if (y.Length != x.Length)
            {
                throw new ArgumentException(Resources.ArgumentVectorsSameLength);
            }

            if (alpha.IsZero())
            {
                y.Copy(result);
            }
            else if (alpha.IsOne())
            {
                if (Control.ParallelizeOperation(x.Length))
                {
                    CommonParallel.For(0, y.Length, index => result[index] = y[index] + x[index]);
                }
                else
                {
                    for (var index = 0; index < x.Length; index++)
                    {
                        result[index] = y[index] + x[index];
                    }
                }
            }
            else
            {
                if (Control.ParallelizeOperation(x.Length))
                {
                    CommonParallel.For(0, y.Length, index => result[index] = y[index] + (alpha * x[index]));
                }
                else
                {
                    for (var index = 0; index < x.Length; index++)
                    {
                        result[index] = y[index] + (alpha * x[index]);
                    }
                }
            }
        }
        /// <summary>
        /// Scales an array. Can be used to scale a vector and a matrix.
        /// </summary>
        /// <param name="alpha">The scalar.</param>
        /// <param name="x">The values to scale.</param>
        /// <remarks>This is equivalent to the SCAL BLAS routine.</remarks>
        public void ScaleArray(Complex alpha, Complex[] x)
        {
            if (x == null)
            {
                throw new ArgumentNullException("x");
            }

            if (alpha.IsOne())
            {
                return;
            }

            SafeNativeMethods.z_scale(x.Length, ref alpha, x);
        }
Example #5
0
        public void CanDetermineIfOneValueComplexNumber()
        {
            var complex = new Complex(1, 0);

            Assert.IsTrue(complex.IsOne(), "Complex number with a value of one.");
        }
        /// <summary>
        /// Multiplies two matrices and updates another with the result. <c>c = alpha*op(a)*op(b) + beta*c</c>
        /// </summary>
        /// <param name="transposeA">How to transpose the <paramref name="a"/> matrix.</param>
        /// <param name="transposeB">How to transpose the <paramref name="b"/> matrix.</param>
        /// <param name="alpha">The value to scale <paramref name="a"/> matrix.</param>
        /// <param name="a">The a matrix.</param>
        /// <param name="rowsA">The number of rows in the <paramref name="a"/> matrix.</param>
        /// <param name="columnsA">The number of columns in the <paramref name="a"/> matrix.</param>
        /// <param name="b">The b matrix</param>
        /// <param name="rowsB">The number of rows in the <paramref name="b"/> matrix.</param>
        /// <param name="columnsB">The number of columns in the <paramref name="b"/> matrix.</param>
        /// <param name="beta">The value to scale the <paramref name="c"/> matrix.</param>
        /// <param name="c">The c matrix.</param>
        public virtual void MatrixMultiplyWithUpdate(Transpose transposeA, Transpose transposeB, Complex alpha, Complex[] a, int rowsA, int columnsA, Complex[] b, int rowsB, int columnsB, Complex beta, Complex[] c)
        {
            int m; // The number of rows of matrix op(A) and of the matrix C.
            int n; // The number of columns of matrix op(B) and of the matrix C.
            int k; // The number of columns of matrix op(A) and the rows of the matrix op(B). 

            // First check some basic requirement on the parameters of the matrix multiplication.
            if (a == null)
            {
                throw new ArgumentNullException("a");
            }

            if (b == null)
            {
                throw new ArgumentNullException("b");
            }

            if ((int)transposeA > 111 && (int)transposeB > 111)
            {
                if (rowsA != columnsB)
                {
                    throw new ArgumentOutOfRangeException();
                }

                if (columnsA * rowsB != c.Length)
                {
                    throw new ArgumentOutOfRangeException();
                }

                m = columnsA;
                n = rowsB;
                k = rowsA;
            }
            else if ((int)transposeA > 111)
            {
                if (rowsA != rowsB)
                {
                    throw new ArgumentOutOfRangeException();
                }

                if (columnsA * columnsB != c.Length)
                {
                    throw new ArgumentOutOfRangeException();
                }

                m = columnsA;
                n = columnsB;
                k = rowsA;
            }
            else if ((int)transposeB > 111)
            {
                if (columnsA != columnsB)
                {
                    throw new ArgumentOutOfRangeException();
                }

                if (rowsA * rowsB != c.Length)
                {
                    throw new ArgumentOutOfRangeException();
                }

                m = rowsA;
                n = rowsB;
                k = columnsA;
            }
            else
            {
                if (columnsA != rowsB)
                {
                    throw new ArgumentOutOfRangeException();
                }

                if (rowsA * columnsB != c.Length)
                {
                    throw new ArgumentOutOfRangeException();
                }

                m = rowsA;
                n = columnsB;
                k = columnsA;
            }

            if (alpha.IsZero() && beta.IsZero())
            {
                Array.Clear(c, 0, c.Length);
                return;
            }

            // Check whether we will be overwriting any of our inputs and make copies if necessary.
            // TODO - we can don't have to allocate a completely new matrix when x or y point to the same memory
            // as result, we can do it on a row wise basis. We should investigate this.
            Complex[] adata;
            if (ReferenceEquals(a, c))
            {
                adata = (Complex[])a.Clone();
            }
            else
            {
                adata = a;
            }

            Complex[] bdata;
            if (ReferenceEquals(b, c))
            {
                bdata = (Complex[])b.Clone();
            }
            else
            {
                bdata = b;
            }

            if (beta.IsZero())
            {
                Array.Clear(c, 0, c.Length);
            }
            else if (!beta.IsOne())
            {
                Control.LinearAlgebraProvider.ScaleArray(beta, c, c);
            }

            if (alpha.IsZero())
            {
                return;
            }

            CacheObliviousMatrixMultiply(transposeA, transposeB, alpha, adata, 0, 0, bdata, 0, 0, c, 0, 0, m, n, k, m, n, k, true);
        }
        /// <summary>
        /// Scales an array. Can be used to scale a vector and a matrix.
        /// </summary>
        /// <param name="alpha">The scalar.</param>
        /// <param name="x">The values to scale.</param>
        /// <param name="result">This result of the scaling.</param>
        /// <remarks>This is similar to the SCAL BLAS routine.</remarks>
        public virtual void ScaleArray(Complex alpha, Complex[] x, Complex[] result)
        {
            if (x == null)
            {
                throw new ArgumentNullException("x");
            }

            if (alpha.IsZero())
            {
                Array.Clear(result, 0, result.Length);
            }
            else if (alpha.IsOne())
            {
                x.Copy(result);
            }
            else
            {
                if (Control.ParallelizeOperation(x.Length))
                {
                    CommonParallel.For(0, x.Length, index => { result[index] = alpha * x[index]; });
                }
                else
                {
                    for (var index = 0; index < x.Length; index++)
                    {
                        result[index] = alpha * x[index];
                    }
                }
            }
        }
        /// <summary>
        /// Scales an array. Can be used to scale a vector and a matrix.
        /// </summary>
        /// <param name="alpha">The scalar.</param>
        /// <param name="x">The values to scale.</param>
        /// <param name="result">This result of the scaling.</param>
        /// <remarks>This is similar to the SCAL BLAS routine.</remarks>
        public virtual void ScaleArray(Complex alpha, Complex[] x, Complex[] result)
        {
            if (x == null)
            {
                throw new ArgumentNullException("x");
            }

            if (alpha.IsZero())
            {
                CommonParallel.For(0, x.Length, index => result[index] = Complex.Zero);
            }
            else if (alpha.IsOne())
            {
                CommonParallel.For(0, x.Length, index => result[index] = x[index]);
            }
            else
            {
                CommonParallel.For(0, x.Length, index => { result[index] = alpha * x[index]; });
            }
        }
        /// <summary>
        /// Multiplies two matrices and updates another with the result. <c>c = alpha*op(a)*op(b) + beta*c</c>
        /// </summary>
        /// <param name="transposeA">How to transpose the <paramref name="a"/> matrix.</param>
        /// <param name="transposeB">How to transpose the <paramref name="b"/> matrix.</param>
        /// <param name="alpha">The value to scale <paramref name="a"/> matrix.</param>
        /// <param name="a">The a matrix.</param>
        /// <param name="rowsA">The number of rows in the <paramref name="a"/> matrix.</param>
        /// <param name="columnsA">The number of columns in the <paramref name="a"/> matrix.</param>
        /// <param name="b">The b matrix</param>
        /// <param name="rowsB">The number of rows in the <paramref name="b"/> matrix.</param>
        /// <param name="columnsB">The number of columns in the <paramref name="b"/> matrix.</param>
        /// <param name="beta">The value to scale the <paramref name="c"/> matrix.</param>
        /// <param name="c">The c matrix.</param>
        public virtual void MatrixMultiplyWithUpdate(Transpose transposeA, Transpose transposeB, Complex alpha, Complex[] a, int rowsA, int columnsA, Complex[] b, int rowsB, int columnsB, Complex beta, Complex[] c)
        {
            // Choose nonsensical values for the number of rows in c; fill them in depending
            // on the operations on a and b.
            int rowsC;

            // First check some basic requirement on the parameters of the matrix multiplication.
            if (a == null)
            {
                throw new ArgumentNullException("a");
            }

            if (b == null)
            {
                throw new ArgumentNullException("b");
            }

            if ((int)transposeA > 111 && (int)transposeB > 111)
            {
                if (rowsA != columnsB)
                {
                    throw new ArgumentOutOfRangeException();
                }

                if (columnsA * rowsB != c.Length)
                {
                    throw new ArgumentOutOfRangeException();
                }

                rowsC = columnsA;
            }
            else if ((int)transposeA > 111)
            {
                if (rowsA != rowsB)
                {
                    throw new ArgumentOutOfRangeException();
                }

                if (columnsA * columnsB != c.Length)
                {
                    throw new ArgumentOutOfRangeException();
                }

                rowsC = columnsA;
            }
            else if ((int)transposeB > 111)
            {
                if (columnsA != columnsB)
                {
                    throw new ArgumentOutOfRangeException();
                }

                if (rowsA * rowsB != c.Length)
                {
                    throw new ArgumentOutOfRangeException();
                }

                rowsC = rowsA;
            }
            else
            {
                if (columnsA != rowsB)
                {
                    throw new ArgumentOutOfRangeException();
                }

                if (rowsA * columnsB != c.Length)
                {
                    throw new ArgumentOutOfRangeException();
                }

                rowsC = rowsA;
            }

            if (alpha.IsZero() && beta.IsZero())
            {
                Array.Clear(c, 0, c.Length);
                return;
            }

            // Check whether we will be overwriting any of our inputs and make copies if necessary.
            // TODO - we can don't have to allocate a completely new matrix when x or y point to the same memory
            // as result, we can do it on a row wise basis. We should investigate this.
            Complex[] adata;
            if (ReferenceEquals(a, c))
            {
                adata = (Complex[])a.Clone();
            }
            else
            {
                adata = a;
            }

            Complex[] bdata;
            if (ReferenceEquals(b, c))
            {
                bdata = (Complex[])b.Clone();
            }
            else
            {
                bdata = b;
            }

            if (alpha.IsOne())
            {
                if (beta.IsZero())
                {
                    if ((int)transposeA > 111 && (int)transposeB > 111)
                    {
                        CommonParallel.For(
                            0,
                            columnsA,
                            j =>
                            {
                                var jIndex = j * rowsC;
                                for (var i = 0; i != rowsB; i++)
                                {
                                    var iIndex = i * rowsA;
                                    Complex s = 0;
                                    for (var l = 0; l != columnsB; l++)
                                    {
                                        s += adata[iIndex + l] * bdata[(l * rowsB) + j];
                                    }

                                    c[jIndex + i] = s;
                                }
                            });
                    }
                    else if ((int)transposeA > 111)
                    {
                        CommonParallel.For(
                            0,
                            columnsB,
                            j =>
                            {
                                var jcIndex = j * rowsC;
                                var jbIndex = j * rowsB;
                                for (var i = 0; i != columnsA; i++)
                                {
                                    var iIndex = i * rowsA;
                                    Complex s = 0;
                                    for (var l = 0; l != rowsA; l++)
                                    {
                                        s += adata[iIndex + l] * bdata[jbIndex + l];
                                    }

                                    c[jcIndex + i] = s;
                                }
                            });
                    }
                    else if ((int)transposeB > 111)
                    {
                        CommonParallel.For(
                            0,
                            rowsB,
                            j =>
                            {
                                var jIndex = j * rowsC;
                                for (var i = 0; i != rowsA; i++)
                                {
                                    Complex s = 0;
                                    for (var l = 0; l != columnsA; l++)
                                    {
                                        s += adata[(l * rowsA) + i] * bdata[(l * rowsB) + j];
                                    }

                                    c[jIndex + i] = s;
                                }
                            });
                    }
                    else
                    {
                        CommonParallel.For(
                            0,
                            columnsB,
                            j =>
                            {
                                var jcIndex = j * rowsC;
                                var jbIndex = j * rowsB;
                                for (var i = 0; i != rowsA; i++)
                                {
                                    Complex s = 0;
                                    for (var l = 0; l != columnsA; l++)
                                    {
                                        s += adata[(l * rowsA) + i] * bdata[jbIndex + l];
                                    }

                                    c[jcIndex + i] = s;
                                }
                            });
                    }
                }
                else
                {
                    if ((int)transposeA > 111 && (int)transposeB > 111)
                    {
                        CommonParallel.For(
                            0,
                            columnsA,
                            j =>
                            {
                                var jIndex = j * rowsC;
                                for (var i = 0; i != rowsB; i++)
                                {
                                    var iIndex = i * rowsA;
                                    Complex s = 0;
                                    for (var l = 0; l != columnsB; l++)
                                    {
                                        s += adata[iIndex + l] * bdata[(l * rowsB) + j];
                                    }

                                    c[jIndex + i] = (c[jIndex + i] * beta) + s;
                                }
                            });
                    }
                    else if ((int)transposeA > 111)
                    {
                        CommonParallel.For(
                            0,
                            columnsB,
                            j =>
                            {
                                var jcIndex = j * rowsC;
                                var jbIndex = j * rowsB;
                                for (var i = 0; i != columnsA; i++)
                                {
                                    var iIndex = i * rowsA;
                                    Complex s = 0;
                                    for (var l = 0; l != rowsA; l++)
                                    {
                                        s += adata[iIndex + l] * bdata[jbIndex + l];
                                    }

                                    c[jcIndex + i] = s + (c[jcIndex + i] * beta);
                                }
                            });
                    }
                    else if ((int)transposeB > 111)
                    {
                        CommonParallel.For(
                            0,
                            rowsB,
                            j =>
                            {
                                var jIndex = j * rowsC;
                                for (var i = 0; i != rowsA; i++)
                                {
                                    Complex s = 0;
                                    for (var l = 0; l != columnsA; l++)
                                    {
                                        s += adata[(l * rowsA) + i] * bdata[(l * rowsB) + j];
                                    }

                                    c[jIndex + i] = s + (c[jIndex + i] * beta);
                                }
                            });
                    }
                    else
                    {
                        CommonParallel.For(
                            0,
                            columnsB,
                            j =>
                            {
                                var jcIndex = j * rowsC;
                                var jbIndex = j * rowsB;
                                for (var i = 0; i != rowsA; i++)
                                {
                                    Complex s = 0;
                                    for (var l = 0; l != columnsA; l++)
                                    {
                                        s += adata[(l * rowsA) + i] * bdata[jbIndex + l];
                                    }

                                    c[jcIndex + i] = s + (c[jcIndex + i] * beta);
                                }
                            });
                    }
                }
            }
            else
            {
                if ((int)transposeA > 111 && (int)transposeB > 111)
                {
                    CommonParallel.For(
                        0,
                        columnsA,
                        j =>
                        {
                            var jIndex = j * rowsC;
                            for (var i = 0; i != rowsB; i++)
                            {
                                var iIndex = i * rowsA;
                                Complex s = 0;
                                for (var l = 0; l != columnsB; l++)
                                {
                                    s += adata[iIndex + l] * bdata[(l * rowsB) + j];
                                }

                                c[jIndex + i] = (c[jIndex + i] * beta) + (alpha * s);
                            }
                        });
                }
                else if ((int)transposeA > 111)
                {
                    CommonParallel.For(
                        0,
                        columnsB,
                        j =>
                        {
                            var jcIndex = j * rowsC;
                            var jbIndex = j * rowsB;
                            for (var i = 0; i != columnsA; i++)
                            {
                                var iIndex = i * rowsA;
                                Complex s = 0;
                                for (var l = 0; l != rowsA; l++)
                                {
                                    s += adata[iIndex + l] * bdata[jbIndex + l];
                                }

                                c[jcIndex + i] = (alpha * s) + (c[jcIndex + i] * beta);
                            }
                        });
                }
                else if ((int)transposeB > 111)
                {
                    CommonParallel.For(
                        0,
                        rowsB,
                        j =>
                        {
                            var jIndex = j * rowsC;
                            for (var i = 0; i != rowsA; i++)
                            {
                                Complex s = 0;
                                for (var l = 0; l != columnsA; l++)
                                {
                                    s += adata[(l * rowsA) + i] * bdata[(l * rowsB) + j];
                                }

                                c[jIndex + i] = (alpha * s) + (c[jIndex + i] * beta);
                            }
                        });
                }
                else
                {
                    CommonParallel.For(
                        0,
                        columnsB,
                        j =>
                        {
                            var jcIndex = j * rowsC;
                            var jbIndex = j * rowsB;
                            for (var i = 0; i != rowsA; i++)
                            {
                                Complex s = 0;
                                for (var l = 0; l != columnsA; l++)
                                {
                                    s += adata[(l * rowsA) + i] * bdata[jbIndex + l];
                                }

                                c[jcIndex + i] = (alpha * s) + (c[jcIndex + i] * beta);
                            }
                        });
                }
            }
        }
Example #10
0
 public void CanDetermineIfOneValueComplexNumber()
 {
     var complex = new Complex(1, 0);
     Assert.IsTrue(complex.IsOne(), "Complex number with a value of one.");
 }