Skip to content

sputier/Fuzzlyn

 
 

Repository files navigation

Fuzzlyn

Fuzzlyn is a fuzzer which utilizes Roslyn to generate random C# programs. It runs these programs on .NET core and ensures that they give the same results when compiled in debug and release mode.

We developed Fuzzlyn as a project for the 2018 Language-Based Security course at Aarhus University. Using Fuzzlyn, we have found and reported several bugs in RyuJIT used both by .NET Core and the full .NET framework. We have also found and reported (a harmless) bug in Roslyn.

Bugs reported

We have reported the following bugs:

Fuzzlyn has found many hundreds of programs producing deviating behavior. Some examples can be seen in the examples folder. To take a couple of examples, Fuzzlyn automatically found and produced the following programs:

// Generated by Fuzzlyn on 2018-06-03 16:17:09
// Seed: 10744458083861091494
// Reduced from 21.3 KB to 0.2 KB
// Debug: Outputs '246'
// Release: Outputs '4294967286'
public class Program
{
    static sbyte s_1 = -10;
    public static void Main()
    {
        ulong vr44 = (byte)(0U ^ s_1);
        System.Console.WriteLine(vr44);
    }
}
// Generated by Fuzzlyn on 2018-06-03 16:15:22
// Seed: 10187462581749713401
// Reduced from 186.5 KB to 0.2 KB
// Debug: Runs successfully
// Release: Throws 'System.DivideByZeroException'
public class Program
{
   public static void Main()
   {
       var vr219 = 'N' % ((35815 / M1(new ushort[]{65535})) | 1);
   }

   static ushort M1(ushort[] arg2)
   {
       return arg2[0];
   }
}

We are working on isolating which bugs are distinct from the ones already reported.

Supported constructs

Fuzzlyn generates only a limited subset of C#. Most importantly, it does not support loops yet. It supports structs and classes, though it does not generate member methods in these. We make no attempt to fully support all kinds of expressions and statements.

Using Fuzzlyn to find bugs

To run Fuzzlyn you must specify the number of programs to generate and check. To run a Fuzzlyn instance that generates a million programs and tries to find bugs in these, run:

dotnet fuzzlyn.dll --num-programs 1000000

Note that this only works with .NET core (i.e. a host like dotnet must be running the program). This is because Fuzzlyn runs instances of itself and it uses the dotnet that started Fuzzlyn to do this.

This command will not produce any output to stdout. However, when a program with deviating behavior is found, Fuzzlyn will append its seed and information about its execution to a file in the current directory called Execution_Mismatch.txt.

Regenerating full programs

When a seed has been obtained, the full program can be regenerated by doing the following:

dotnet fuzzlyn.dll --seed <seed here> --output-source

This will generate exactly the code that produced deviating behavior at runtime. However, these examples cannot be run directly because they include checksumming of variables, which requires the IRuntime interface to be passed to the Main method. Instead, you can disable checksumming by passing the --checksum- (note the minus) switch:

dotnet fuzzlyn.dll --seed <seed here> --output-source --checksum-

These examples are not very useful because they are very big. For that reason, Fuzzlyn includes an automatic reducer, which takes a seed and reduces the program specified by that seed to something smaller, while retaining the interesting behavior.

Reducing programs

To reduce a program, use the --reduce switch:

dotnet fuzzlyn.dll --seed <seed here> --reduce

Depending on the size of the program, this will take a while (the biggest example in the examples directory takes roughly 30 minutes to reduce on an i7-4770k). However, most programs do not take longer than a few minutes. The output of this command will be a small C# program, that includes information about its seed, size and runtime behavior.

Reproducing errors in reduced programs

The reduced programs produced by the --reduce switch are not the original reduced programs that caused deviating behavior. Most specifically, the programs have had their checksum calls replaced by System.Console.WriteLine calls, and other checksumming related code removed. This means that the files can be compiled directly with csc.exe, or pasted into VS directly. However, it also means that in very rare cases, the examples do not actually reproduce the errors they are supposed to. One such case is the following:

// Generated by Fuzzlyn on 2018-06-03 16:15:22
// Seed: 1019504228635510285
// Reduced from 154.8 KB to 0.9 KB
// Debug: Outputs '10402227607262999317'
// Release: Throws 'System.NullReferenceException'
struct S0
{
    public uint F0;
    public char F1;
    public int F2;
    public int F3;
    public uint F4;
    public ulong F5;
    public short F6;
    public byte F7;
    public S0(uint f0, char f1, int f2, int f3, uint f4, ulong f5, short f6, byte f7)
    {
        F0 = f0;
        F1 = f1;
        F2 = f2;
        F3 = f3;
        F4 = f4;
        F5 = f5;
        F6 = f6;
        F7 = f7;
    }
}

public class Program
{
    static int[, ] s_1 = new int[, ]{{-1860696896}};
    public static void Main()
    {
        var vr196 = new S0(0U, 'Y', 0, 876181050, 2606508611U, 10402227607262999317UL, 15399, 254);
        var vr197 = (uint)(0U & s_1[0, 0]);
        var vr198 = s_1[0, 0];
        M20(vr196, vr197);
    }

    static int M20(S0 arg0, uint arg2)
    {
        System.Console.WriteLine(arg0.F5);
        return -2147483647;
    }
}

In these cases it is easy to introduce the deviating behavior by reintroducing some of the code and class hierarchies used by the checksumming:

// Generated by Fuzzlyn on 2018-06-03 16:15:22
// Seed: 1019504228635510285
// Reduced from 154.8 KB to 0.9 KB
// Debug: Outputs '10402227607262999317'
// Release: Throws 'System.NullReferenceException'
struct S0
{
    public uint F0;
    public char F1;
    public int F2;
    public int F3;
    public uint F4;
    public ulong F5;
    public short F6;
    public byte F7;
    public S0(uint f0, char f1, int f2, int f3, uint f4, ulong f5, short f6, byte f7)
    {
        F0 = f0;
        F1 = f1;
        F2 = f2;
        F3 = f3;
        F4 = f4;
        F5 = f5;
        F6 = f6;
        F7 = f7;
    }
}

interface IRuntime
{
    void WriteLine<T>(T val);
}

class Runtime : IRuntime
{
    public void WriteLine<T>(T val) => System.Console.WriteLine(val);
}

public class Program
{
    static IRuntime s_rt;
    static int[, ] s_1 = new int[, ]{{-1860696896}};
    public static void Main()
    {
        s_rt = new Runtime();
        var vr196 = new S0(0U, 'Y', 0, 876181050, 2606508611U, 10402227607262999317UL, 15399, 254);
        var vr197 = (uint)(0U & s_1[0, 0]);
        var vr198 = s_1[0, 0];
        M20(vr196, vr197);
    }

    static int M20(S0 arg0, uint arg2)
    {
        s_rt.WriteLine(arg0.F5);
        return -2147483647;
    }
}

While this is still not exactly the same as if Fuzzlyn generated it, it reproduces the error described at the start of the file.

About

Fuzzer for the .NET toolchains, developed as a project for the 2018 Language-Based Security course at Aarhus University.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • C# 100.0%