Ejemplo n.º 1
0
 public Hinge ConstructNegative()
 {
     Hinge h = new Hinge();
     h.Value = this.Value;
     h.Variable = this.Variable;
     h.Negative = true;
     return h;
 }
Ejemplo n.º 2
0
        public Hinge ConstructNegative()
        {
            Hinge h = new Hinge();

            h.Value    = this.Value;
            h.Variable = this.Variable;
            h.Negative = true;
            return(h);
        }
Ejemplo n.º 3
0
 public Basis(Basis parent, Hinge hinge, int DataSetRows)
 {
     if (parent != null)
         Hinges.AddRange(parent.Hinges);
     
     Parent = parent;
     ht = new double[DataSetRows];
     for (int h = 0; h < ht.Length; h++)
         ht[h] = 1.0;
     htExists = new bool[DataSetRows];
     
     Hinges.Add(hinge);
 }
Ejemplo n.º 4
0
        public Basis(Basis parent, Hinge hinge, int DataSetRows)
        {
            if (parent != null)
            {
                Hinges.AddRange(parent.Hinges);
            }

            Parent = parent;
            ht     = new double[DataSetRows];
            for (int h = 0; h < ht.Length; h++)
            {
                ht[h] = 1.0;
            }
            htExists = new bool[DataSetRows];

            Hinges.Add(hinge);
        }
Ejemplo n.º 5
0
        public List <double> Predict(string value)
        {
            m = new Model(GetX(value), GetColumnDouble("mpg").ToArray());

            //hinge test
            var xs = GetX("mpg");


            int    MAX_HINGES_IN_BASIS = 30;
            int    MAX_BASISES         = 15;
            double MAX_DELTA_RSS       = 0.00000001;
            int    DATASET_ROWS        = m.Y.Length;

            //B0
            m.AddBasis(new Basis(null, null, 1.0, DATASET_ROWS), null);

            do
            {
                int solutions = 0;

                for (int i = 0; i < m.Basises.Count; i++)
                {
                    double PotentialRSS = m.RSS;

                    bool betterFound = false;

                    int varN = 0;
                    int valN = 0;

                    double[][] bData;

                    //There is one restriction put on the formation of model terms: each input
                    //can appear at most once in a product.
                    for (int j = 0; j < m.Regressors[0].Length; j++)
                    {
                        if (m.Basises[i].IsInputAppearsInProduct(j))
                        {
                            continue;
                        }

                        if (m.Basises[i].HingesCount >= MAX_HINGES_IN_BASIS)
                        {
                            break;
                        }

                        Hinge h          = new Hinge(j, 0.0);
                        Hinge hReflected = h.ConstructNegative();

                        Basis b          = new Basis(m.Basises[i], h, DATASET_ROWS);
                        Basis bReflected = new Basis(m.Basises[i], hReflected, DATASET_ROWS);

                        bData = null;

                        int[] kOrdered = m.GetArrayOrder(m.GetRegressorsColumn(j));
                        m.uValue1 = double.MinValue;
                        m.uValue2 = double.MinValue;
                        for (int k = m.Regressors.Length - 2; k >= 0; k--)
                        {
                            //каков индекс в регрессорах k по убыванию элемента
                            int ki0 = kOrdered[k];
                            int ki1 = kOrdered[k + 1];     //kOrdered[ki1] должно быть больше или равно нулевого, у нас же убывающий порядок

                            double k0 = m.Regressors[ki0][j];
                            double k1 = m.Regressors[ki1][j];

                            double kdiff = k1 - k0;

                            if (kdiff < 0)
                            {
                                throw new Exception("t should be <= u !");
                            }
                            //k0  -- t
                            //k1  -- u
                            h.Value          = k0;
                            hReflected.Value = k0;

                            //double rss = m.CheckNewBasisCholessky(b, bReflected);
                            double rss = m.CheckNewBasisCholeskyFast(b, bReflected, k1, ref bData);
                            //double rss = m.CheckNewBasisEquation52(b, bReflected, 0.0, ref bData);
                            if (rss == double.MaxValue)
                            {
                                continue;
                            }
                            Console.WriteLine("Cholessky rss = " + rss);
                            // rss = m.CheckNewBasisFast(b, bReflected, 0.0, ref bData);
                            //Console.WriteLine("Fast rss = " + rss);
                            //double rss = m.CheckNewBasis(b, bReflected);

                            if (rss < PotentialRSS)
                            {
                                PotentialRSS = rss;
                                varN         = j;
                                valN         = k;
                                betterFound  = true;
                            }
                        }
                    }

                    if (betterFound)
                    {
                        solutions++;

                        Hinge winnerHinge          = new Hinge(varN, m.Regressors[valN][varN]);
                        Hinge winnerHingeReflected = winnerHinge.ConstructNegative();

                        Basis winnerBasis          = new Basis(m.Basises[i], winnerHinge, DATASET_ROWS);
                        Basis winnerBasisReflected = new Basis(m.Basises[i], winnerHingeReflected, DATASET_ROWS);

                        m.AddBasis(winnerBasis, winnerBasisReflected);
                        if (m.Basises.Count >= MAX_BASISES)
                        {
                            break;
                        }
                    }
                }


                if (solutions == 0)
                {
                    break;                 //no solutions anymore which decrease RSS
                }
                if (m.Basises.Count >= MAX_BASISES)
                {
                    break;
                }
                if (m.Basises.Any(b => b.HingesCount > MAX_HINGES_IN_BASIS))
                {
                    break;
                }
            }while (true);


            //Pruning pass


            double [] GCVs = new double[m.Basises.Count];

            using (System.IO.StreamWriter t = new StreamWriter("output.txt"))
            {
                t.WriteLine(RegressionToolkit.DoubleToR(m.RegressorsTransformed));
                t.WriteLine(RegressionToolkit.DoubleToR(m.Y));
            }

            do
            {
                double  lowestGCV      = 1000000.0;
                int     lowestGCVIndex = 1;
                Basis[] tempBasises    = new Basis[m.Basises.Count];
                m.Basises.CopyTo(tempBasises);

                for (int i = 1; i < m.Basises.Count; i++)
                {
                    m.RemoveBasisAt(i);
                    if (m.GCV < lowestGCV)
                    {
                        lowestGCV      = m.GCV;
                        lowestGCVIndex = i;
                    }
                    m.ResetBasis(tempBasises);
                    //using (System.IO.StreamWriter t = new StreamWriter("output.txt"))
                    //{
                    //    t.WriteLine(RegressionToolkit.DoubleToR(m.RegressorsTransformed));
                    //}
                }
                m.RemoveBasisAt(lowestGCVIndex);

                if (m.Basises.Count == 3)
                {
                    break;
                }
            }while (true);

            Console.WriteLine(Model._warns);
            Console.WriteLine(RegressionToolkit._bad);
            Console.WriteLine(RegressionToolkit._good);
            return(new List <double>());
        }