/// <summary>
        /// Evidence message for EP
        /// </summary>
        /// <param name="isPositive">Incoming message from 'isPositive'.</param>
        /// <param name="x">Incoming message from 'x'.</param>
        /// <returns>Logarithm of the factor's average value across the given argument distributions</returns>
        /// <remarks><para>
        /// The formula for the result is <c>log(sum_(isPositive,x) p(isPositive,x) factor(isPositive,x))</c>.
        /// </para></remarks>
        public static double LogAverageFactor(Bernoulli isPositive, Gaussian x)
        {
            Bernoulli to_isPositive = IsPositiveAverageConditional(x);

            return(isPositive.GetLogAverageOf(to_isPositive));

#if false
            // Z = p(b=T) p(x > 0) + p(b=F) p(x <= 0)
            //   = p(b=F) + (p(b=T) - p(b=F)) p(x > 0)
            if (x.IsPointMass)
            {
                return(Factor.IsPositive(x.Point) ? isPositive.GetLogProbTrue() : isPositive.GetLogProbFalse());
            }
            else if (x.IsUniform())
            {
                return(Bernoulli.LogProbEqual(isPositive.LogOdds, 0.0));
            }
            else
            {
                // m/sqrt(v) = (m/v)/sqrt(1/v)
                double z = x.MeanTimesPrecision / Math.Sqrt(x.Precision);
                if (isPositive.IsPointMass)
                {
                    return(isPositive.Point ? MMath.NormalCdfLn(z) : MMath.NormalCdfLn(-z));
                }
                else
                {
                    return(MMath.LogSumExp(isPositive.GetLogProbTrue() + MMath.NormalCdfLn(z), isPositive.GetLogProbFalse() + MMath.NormalCdfLn(-z)));
                }
            }
#endif
        }