Beispiel #1
0
		/// <summary>
		/// image average relative error.
		/// </summary>
		/// <param name="src2">2nd source image</param>
		/// <param name="pError">Pointer to the computed error.</param>
		/// <param name="buffer">Pointer to the user-allocated scratch buffer required for the AverageRelativeError operation.</param>
		public void AverageRelativeError(NPPImage_32fC2 src2, CudaDeviceVariable<double> pError, CudaDeviceVariable<byte> buffer)
		{
			int bufferSize = AverageRelativeErrorGetBufferHostSize();
			if (bufferSize > buffer.Size) throw new NPPException("Provided buffer is too small.");

			status = NPPNativeMethods.NPPi.AverageRelativeError.nppiAverageRelativeError_32f_C2R(_devPtrRoi, _pitch, src2.DevicePointerRoi, src2.Pitch, _sizeRoi, pError.DevicePointer, buffer.DevicePointer);
			Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "nppiAverageRelativeError_32f_C2R", status));
			NPPException.CheckNppStatus(status, this);
		}
Beispiel #2
0
		/// <summary>
		/// image maximum relative error. User buffer is internally allocated and freed.
		/// </summary>
		/// <param name="src2">2nd source image</param>
		/// <param name="pError">Pointer to the computed error.</param>
		public void MaximumRelativeError(NPPImage_32fC2 src2, CudaDeviceVariable<double> pError)
		{
			int bufferSize = MaximumRelativeErrorGetBufferHostSize();
			CudaDeviceVariable<byte> buffer = new CudaDeviceVariable<byte>(bufferSize);
			status = NPPNativeMethods.NPPi.MaximumRelativeError.nppiMaximumRelativeError_32f_C2R(_devPtrRoi, _pitch, src2.DevicePointerRoi, src2.Pitch, _sizeRoi, pError.DevicePointer, buffer.DevicePointer);
			Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "nppiMaximumRelativeError_32f_C2R", status));
			buffer.Dispose();
			NPPException.CheckNppStatus(status, this);
		}
Beispiel #3
0
 /// <summary>
 /// Two channel 32-bit float convolution filter with border control.<para/>
 /// General purpose 2D convolution filter using floating-point weights with border control.<para/>
 /// Pixels under the mask are multiplied by the respective weights in the mask
 /// and the results are summed. Before writing the result pixel the sum is scaled
 /// back via division by nDivisor. If any portion of the mask overlaps the source
 /// image boundary the requested border type operation is applied to all mask pixels
 /// which fall outside of the source image. <para/>
 /// </summary>
 /// <param name="dest">Destination image</param>
 /// <param name="pKernel">Pointer to the start address of the kernel coefficient array. Coeffcients are expected to be stored in reverse order</param>
 /// <param name="nKernelSize">Width and Height of the rectangular kernel.</param>
 /// <param name="oAnchor">X and Y offsets of the kernel origin frame of reference relative to the source pixel.</param>
 /// <param name="eBorderType">The border type operation to be applied at source image border boundaries.</param>
 /// <param name="filterArea">The area where the filter is allowed to read pixels. The point is relative to the ROI set to source image, the size is the total size starting from the filterArea point. Default value is the set ROI.</param>
 /// <param name="nppStreamCtx">NPP stream context.</param>
 public void FilterBorder(NPPImage_32fC2 dest, CudaDeviceVariable <float> pKernel, NppiSize nKernelSize, NppiPoint oAnchor, NppiBorderType eBorderType, NppStreamContext nppStreamCtx, NppiRect filterArea = new NppiRect())
 {
     if (filterArea.Size == new NppiSize())
     {
         filterArea.Size = _sizeRoi;
     }
     status = NPPNativeMethods_Ctx.NPPi.FilterBorder.nppiFilterBorder_32f_C2R_Ctx(_devPtrRoi, _pitch, filterArea.Size, filterArea.Location, dest.DevicePointerRoi, dest.Pitch, dest.SizeRoi, pKernel.DevicePointer, nKernelSize, oAnchor, eBorderType, nppStreamCtx);
     Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "nppiFilterBorder_32f_C2R_Ctx", status));
     NPPException.CheckNppStatus(status, this);
 }
Beispiel #4
0
        /// <summary>
        /// image average error. User buffer is internally allocated and freed.
        /// </summary>
        /// <param name="src2">2nd source image</param>
        /// <param name="pError">Pointer to the computed error.</param>
        /// <param name="nppStreamCtx">NPP stream context.</param>
        public void AverageError(NPPImage_32fC2 src2, CudaDeviceVariable <double> pError, NppStreamContext nppStreamCtx)
        {
            int bufferSize = AverageErrorGetBufferHostSize(nppStreamCtx);
            CudaDeviceVariable <byte> buffer = new CudaDeviceVariable <byte>(bufferSize);

            status = NPPNativeMethods_Ctx.NPPi.AverageError.nppiAverageError_32f_C2R_Ctx(_devPtrRoi, _pitch, src2.DevicePointerRoi, src2.Pitch, _sizeRoi, pError.DevicePointer, buffer.DevicePointer, nppStreamCtx);
            Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "nppiAverageError_32f_C2R_Ctx", status));
            buffer.Dispose();
            NPPException.CheckNppStatus(status, this);
        }
Beispiel #5
0
        /// <summary>
        /// image maximum relative error.
        /// </summary>
        /// <param name="src2">2nd source image</param>
        /// <param name="pError">Pointer to the computed error.</param>
        /// <param name="buffer">Pointer to the user-allocated scratch buffer required for the MaximumRelativeError operation.</param>
        /// <param name="nppStreamCtx">NPP stream context.</param>
        public void MaximumRelativeError(NPPImage_32fC2 src2, CudaDeviceVariable <double> pError, CudaDeviceVariable <byte> buffer, NppStreamContext nppStreamCtx)
        {
            int bufferSize = MaximumRelativeErrorGetBufferHostSize(nppStreamCtx);

            if (bufferSize > buffer.Size)
            {
                throw new NPPException("Provided buffer is too small.");
            }

            status = NPPNativeMethods_Ctx.NPPi.MaximumRelativeError.nppiMaximumRelativeError_32f_C2R_Ctx(_devPtrRoi, _pitch, src2.DevicePointerRoi, src2.Pitch, _sizeRoi, pError.DevicePointer, buffer.DevicePointer, nppStreamCtx);
            Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "nppiMaximumRelativeError_32f_C2R_Ctx", status));
            NPPException.CheckNppStatus(status, this);
        }
Beispiel #6
0
 /// <summary>
 /// convolution filter.
 /// </summary>
 /// <param name="dst">Destination-Image</param>
 /// <param name="pKernel">Pointer to the start address of the kernel coefficient array.<para/>
 /// Coefficients are expected to be stored in reverse order.</param>
 /// <param name="oKernelSize">Width and Height of the rectangular kernel.</param>
 /// <param name="oAnchor">X and Y offsets of the kernel origin frame of reference</param>
 public void Filter(NPPImage_32fC2 dst, CudaDeviceVariable <float> pKernel, NppiSize oKernelSize, NppiPoint oAnchor)
 {
     status = NPPNativeMethods.NPPi.Convolution.nppiFilter_32f_C2R(_devPtrRoi, _pitch, dst.DevicePointerRoi, dst.Pitch, _sizeRoi, pKernel.DevicePointer, oKernelSize, oAnchor);
     Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "nppiFilter_32f_C2R", status));
     NPPException.CheckNppStatus(status, this);
 }
Beispiel #7
0
 /// <summary>
 /// Two channel 32-bit float convolution filter with border control.<para/>
 /// General purpose 2D convolution filter using floating-point weights with border control.<para/>
 /// Pixels under the mask are multiplied by the respective weights in the mask
 /// and the results are summed. Before writing the result pixel the sum is scaled
 /// back via division by nDivisor. If any portion of the mask overlaps the source
 /// image boundary the requested border type operation is applied to all mask pixels
 /// which fall outside of the source image. <para/>
 /// </summary>
 /// <param name="dest">Destination image</param>
 /// <param name="pKernel">Pointer to the start address of the kernel coefficient array. Coeffcients are expected to be stored in reverse order</param>
 /// <param name="nKernelSize">Width and Height of the rectangular kernel.</param>
 /// <param name="oAnchor">X and Y offsets of the kernel origin frame of reference relative to the source pixel.</param>
 /// <param name="eBorderType">The border type operation to be applied at source image border boundaries.</param>
 public void FilterBorder(NPPImage_32fC2 dest, CudaDeviceVariable <float> pKernel, NppiSize nKernelSize, NppiPoint oAnchor, NppiBorderType eBorderType)
 {
     status = NPPNativeMethods.NPPi.FilterBorder.nppiFilterBorder_32f_C2R(_devPtr, _pitch, _sizeOriginal, _pointRoi, dest.DevicePointerRoi, dest.Pitch, dest.SizeRoi, pKernel.DevicePointer, nKernelSize, oAnchor, eBorderType);
     Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "nppiFilterBorder_32f_C2R", status));
     NPPException.CheckNppStatus(status, this);
 }
Beispiel #8
0
 /// <summary>
 /// An input color twist matrix with floating-point pixel values is applied
 /// within ROI.
 /// </summary>
 /// <param name="dest">Destination image</param>
 /// <param name="twistMatrix">The color twist matrix with floating-point pixel values [3,4].</param>
 public void ColorTwist(NPPImage_32fC2 dest, float[,] twistMatrix)
 {
     status = NPPNativeMethods.NPPi.ColorProcessing.nppiColorTwist_32f_C2R(_devPtr, _pitch, dest.DevicePointer, dest.Pitch, _sizeRoi, twistMatrix);
     Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "nppiColorTwist_32f_C2R", status));
     NPPException.CheckNppStatus(status, this);
 }
Beispiel #9
0
 /// <summary>
 /// Image composition using image alpha values (0 - max channel pixel value).
 /// </summary>
 /// <param name="src2">2nd source image</param>
 /// <param name="dest">Destination image</param>
 /// <param name="nppAlphaOp">alpha compositing operation</param>
 public void AlphaComp(NPPImage_32fC2 src2, NPPImage_32fC2 dest, NppiAlphaOp nppAlphaOp)
 {
     status = NPPNativeMethods.NPPi.AlphaComp.nppiAlphaComp_32f_AC1R(_devPtrRoi, _pitch, src2.DevicePointerRoi, src2.Pitch, dest.DevicePointerRoi, dest.Pitch, _sizeRoi, nppAlphaOp);
     Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "nppiAlphaComp_32f_AC1R", status));
     NPPException.CheckNppStatus(status, this);
 }
Beispiel #10
0
		/// <summary>
		/// convolution filter.
		/// </summary>
		/// <param name="dst">Destination-Image</param>
		/// <param name="pKernel">Pointer to the start address of the kernel coefficient array.<para/>
		/// Coefficients are expected to be stored in reverse order.</param>
		/// <param name="oKernelSize">Width and Height of the rectangular kernel.</param>
		/// <param name="oAnchor">X and Y offsets of the kernel origin frame of reference</param>
		public void Filter(NPPImage_32fC2 dst, CudaDeviceVariable<float> pKernel, NppiSize oKernelSize, NppiPoint oAnchor)
		{
			status = NPPNativeMethods.NPPi.Convolution.nppiFilter_32f_C2R(_devPtrRoi, _pitch, dst.DevicePointerRoi, dst.Pitch, _sizeRoi, pKernel.DevicePointer, oKernelSize, oAnchor);
			Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "nppiFilter_32f_C2R", status));
			NPPException.CheckNppStatus(status, this);
		}
Beispiel #11
0
		/// <summary>
		/// Two channel 32-bit float convolution filter with border control.<para/>
		/// General purpose 2D convolution filter using floating-point weights with border control.<para/>
		/// Pixels under the mask are multiplied by the respective weights in the mask
		/// and the results are summed. Before writing the result pixel the sum is scaled
		/// back via division by nDivisor. If any portion of the mask overlaps the source
		/// image boundary the requested border type operation is applied to all mask pixels
		/// which fall outside of the source image. <para/>
		/// </summary>
		/// <param name="dest">Destination image</param>
		/// <param name="pKernel">Pointer to the start address of the kernel coefficient array. Coeffcients are expected to be stored in reverse order</param>
		/// <param name="nKernelSize">Width and Height of the rectangular kernel.</param>
		/// <param name="oAnchor">X and Y offsets of the kernel origin frame of reference relative to the source pixel.</param>
		/// <param name="eBorderType">The border type operation to be applied at source image border boundaries.</param>
		public void FilterBorder(NPPImage_32fC2 dest, CudaDeviceVariable<float> pKernel, NppiSize nKernelSize, NppiPoint oAnchor, NppiBorderType eBorderType)
		{
			status = NPPNativeMethods.NPPi.FilterBorder.nppiFilterBorder_32f_C2R(_devPtr, _pitch, _sizeOriginal, _pointRoi, dest.DevicePointerRoi, dest.Pitch, dest.SizeRoi, pKernel.DevicePointer, nKernelSize, oAnchor, eBorderType);
			Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "nppiFilterBorder_32f_C2R", status));
			NPPException.CheckNppStatus(status, this);
		}
Beispiel #12
0
		/// <summary>
		/// An input color twist matrix with floating-point pixel values is applied
		/// within ROI.
		/// </summary>
		/// <param name="dest">Destination image</param>
		/// <param name="twistMatrix">The color twist matrix with floating-point pixel values [3,4].</param>
		public void ColorTwist(NPPImage_32fC2 dest, float[,] twistMatrix)
		{
			status = NPPNativeMethods.NPPi.ColorProcessing.nppiColorTwist_32f_C2R(_devPtr, _pitch, dest.DevicePointer, dest.Pitch, _sizeRoi, twistMatrix);
			Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "nppiColorTwist_32f_C2R", status));
			NPPException.CheckNppStatus(status, this);
		}
Beispiel #13
0
		/// <summary>
		/// image average relative error.
		/// </summary>
		/// <param name="src2">2nd source image</param>
		/// <param name="pError">Pointer to the computed error.</param>
		/// <param name="buffer">Pointer to the user-allocated scratch buffer required for the AverageRelativeError operation.</param>
		public void AverageRelativeError(NPPImage_32fC2 src2, CudaDeviceVariable<double> pError, CudaDeviceVariable<byte> buffer)
		{
			int bufferSize = AverageRelativeErrorGetBufferHostSize();
			if (bufferSize > buffer.Size) throw new NPPException("Provided buffer is too small.");

			status = NPPNativeMethods.NPPi.AverageRelativeError.nppiAverageRelativeError_32f_C2R(_devPtrRoi, _pitch, src2.DevicePointerRoi, src2.Pitch, _sizeRoi, pError.DevicePointer, buffer.DevicePointer);
			Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "nppiAverageRelativeError_32f_C2R", status));
			NPPException.CheckNppStatus(status, this);
		}
Beispiel #14
0
		/// <summary>
		/// image maximum relative error. User buffer is internally allocated and freed.
		/// </summary>
		/// <param name="src2">2nd source image</param>
		/// <param name="pError">Pointer to the computed error.</param>
		public void MaximumRelativeError(NPPImage_32fC2 src2, CudaDeviceVariable<double> pError)
		{
			int bufferSize = MaximumRelativeErrorGetBufferHostSize();
			CudaDeviceVariable<byte> buffer = new CudaDeviceVariable<byte>(bufferSize);
			status = NPPNativeMethods.NPPi.MaximumRelativeError.nppiMaximumRelativeError_32f_C2R(_devPtrRoi, _pitch, src2.DevicePointerRoi, src2.Pitch, _sizeRoi, pError.DevicePointer, buffer.DevicePointer);
			Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "nppiMaximumRelativeError_32f_C2R", status));
			buffer.Dispose();
			NPPException.CheckNppStatus(status, this);
		}
Beispiel #15
0
		/// <summary>
		/// Image composition using image alpha values (0 - max channel pixel value).
		/// </summary>
		/// <param name="src2">2nd source image</param>
		/// <param name="dest">Destination image</param>
		/// <param name="nppAlphaOp">alpha compositing operation</param>
		public void AlphaComp(NPPImage_32fC2 src2, NPPImage_32fC2 dest, NppiAlphaOp nppAlphaOp)
		{
			status = NPPNativeMethods.NPPi.AlphaComp.nppiAlphaComp_32f_AC1R(_devPtrRoi, _pitch, src2.DevicePointerRoi, src2.Pitch, dest.DevicePointerRoi, dest.Pitch, _sizeRoi, nppAlphaOp);
			Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "nppiAlphaComp_32f_AC1R", status));
			NPPException.CheckNppStatus(status, this);
		}