public static double Calculate(IEnumerable <double> startValues, IEnumerable <IEnumerable <double> > actualContinuations, IEnumerable <IEnumerable <double> > predictedContinuations, out OnlineCalculatorError errorState)
        {
            IEnumerator <double> startValueEnumerator = startValues.GetEnumerator();
            IEnumerator <IEnumerable <double> >         actualContinuationsEnumerator    = actualContinuations.GetEnumerator();
            IEnumerator <IEnumerable <double> >         predictedContinuationsEnumerator = predictedContinuations.GetEnumerator();
            OnlineWeightedDirectionalSymmetryCalculator calculator = new OnlineWeightedDirectionalSymmetryCalculator();

            // always move forward all enumerators (do not use short-circuit evaluation!)
            while (startValueEnumerator.MoveNext() & actualContinuationsEnumerator.MoveNext() & predictedContinuationsEnumerator.MoveNext())
            {
                calculator.Add(startValueEnumerator.Current, actualContinuationsEnumerator.Current, predictedContinuationsEnumerator.Current);
                if (calculator.ErrorState != OnlineCalculatorError.None)
                {
                    break;
                }
            }

            // check if all enumerators are at the end to make sure both enumerations have the same length
            if (calculator.ErrorState == OnlineCalculatorError.None &&
                (startValueEnumerator.MoveNext() || actualContinuationsEnumerator.MoveNext() || predictedContinuationsEnumerator.MoveNext()))
            {
                throw new ArgumentException("Number of elements in startValues, actualContinuations and estimatedValues predictedContinuations doesn't match.");
            }
            else
            {
                errorState = calculator.ErrorState;
                return(calculator.WeightedDirectionalSymmetry);
            }
        }
        public static double Calculate(double startValue, IEnumerable <double> actualContinuation, IEnumerable <double> predictedContinuation, out OnlineCalculatorError errorState)
        {
            OnlineWeightedDirectionalSymmetryCalculator calculator = new OnlineWeightedDirectionalSymmetryCalculator();

            calculator.Add(startValue, actualContinuation, predictedContinuation);
            errorState = calculator.ErrorState;
            return(calculator.WeightedDirectionalSymmetry);
        }
Beispiel #3
0
 protected OnlineWeightedDirectionalSymmetryCalculator(OnlineWeightedDirectionalSymmetryCalculator original, Cloner cloner)
     : base(original, cloner)
 {
     n            = original.n;
     correctSum   = original.correctSum;
     incorrectSum = original.incorrectSum;
     errorState   = original.errorState;
 }
        private void CalculateTrainingPrognosisResults()
        {
            OnlineCalculatorError errorState;
            var problemData = Solution.ProblemData;

            if (!problemData.TrainingIndices.Any())
            {
                return;
            }
            var model = Solution.Model;
            //mean model
            double trainingMean = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, problemData.TrainingIndices).Average();
            var    meanModel    = new ConstantModel(trainingMean);

            //AR1 model
            double alpha, beta;
            IEnumerable <double> trainingStartValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, problemData.TrainingIndices.Select(r => r - 1).Where(r => r > 0)).ToList();

            OnlineLinearScalingParameterCalculator.Calculate(problemData.Dataset.GetDoubleValues(problemData.TargetVariable, problemData.TrainingIndices.Where(x => x > 0)), trainingStartValues, out alpha, out beta, out errorState);
            var AR1model = new TimeSeriesPrognosisAutoRegressiveModel(problemData.TargetVariable, new double[] { beta }, alpha);

            var trainingHorizions = problemData.TrainingIndices.Select(r => Math.Min(trainingHorizon, problemData.TrainingPartition.End - r)).ToList();
            IEnumerable <IEnumerable <double> > trainingTargetValues         = problemData.TrainingIndices.Zip(trainingHorizions, Enumerable.Range).Select(r => problemData.Dataset.GetDoubleValues(problemData.TargetVariable, r)).ToList();
            IEnumerable <IEnumerable <double> > trainingEstimatedValues      = model.GetPrognosedValues(problemData.Dataset, problemData.TrainingIndices, trainingHorizions).ToList();
            IEnumerable <IEnumerable <double> > trainingMeanModelPredictions = meanModel.GetPrognosedValues(problemData.Dataset, problemData.TrainingIndices, trainingHorizions).ToList();
            IEnumerable <IEnumerable <double> > trainingAR1ModelPredictions  = AR1model.GetPrognosedValues(problemData.Dataset, problemData.TrainingIndices, trainingHorizions).ToList();

            IEnumerable <double> originalTrainingValues  = trainingTargetValues.SelectMany(x => x).ToList();
            IEnumerable <double> estimatedTrainingValues = trainingEstimatedValues.SelectMany(x => x).ToList();

            double trainingMSE = OnlineMeanSquaredErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState);

            PrognosisTrainingMeanSquaredError = errorState == OnlineCalculatorError.None ? trainingMSE : double.NaN;
            double trainingMAE = OnlineMeanAbsoluteErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState);

            PrognosisTrainingMeanAbsoluteError = errorState == OnlineCalculatorError.None ? trainingMAE : double.NaN;
            double trainingR = OnlinePearsonsRCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState);

            PrognosisTrainingRSquared = errorState == OnlineCalculatorError.None ? trainingR * trainingR : double.NaN;
            double trainingRelError = OnlineMeanAbsolutePercentageErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState);

            PrognosisTrainingRelativeError = errorState == OnlineCalculatorError.None ? trainingRelError : double.NaN;
            double trainingNMSE = OnlineNormalizedMeanSquaredErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState);

            PrognosisTrainingNormalizedMeanSquaredError = errorState == OnlineCalculatorError.None ? trainingNMSE : double.NaN;
            double trainingME = OnlineMeanErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState);

            PrognosisTrainingMeanError = errorState == OnlineCalculatorError.None ? trainingME : double.NaN;

            PrognosisTrainingDirectionalSymmetry         = OnlineDirectionalSymmetryCalculator.Calculate(trainingStartValues, trainingTargetValues, trainingEstimatedValues, out errorState);
            PrognosisTrainingDirectionalSymmetry         = errorState == OnlineCalculatorError.None ? PrognosisTrainingDirectionalSymmetry : 0.0;
            PrognosisTrainingWeightedDirectionalSymmetry = OnlineWeightedDirectionalSymmetryCalculator.Calculate(trainingStartValues, trainingTargetValues, trainingEstimatedValues, out errorState);
            PrognosisTrainingWeightedDirectionalSymmetry = errorState == OnlineCalculatorError.None ? PrognosisTrainingWeightedDirectionalSymmetry : 0.0;
            PrognosisTrainingTheilsUStatisticAR1         = OnlineTheilsUStatisticCalculator.Calculate(trainingStartValues, trainingTargetValues, trainingAR1ModelPredictions, trainingEstimatedValues, out errorState);
            PrognosisTrainingTheilsUStatisticAR1         = errorState == OnlineCalculatorError.None ? PrognosisTrainingTheilsUStatisticAR1 : double.PositiveInfinity;
            PrognosisTrainingTheilsUStatisticMean        = OnlineTheilsUStatisticCalculator.Calculate(trainingStartValues, trainingTargetValues, trainingMeanModelPredictions, trainingEstimatedValues, out errorState);
            PrognosisTrainingTheilsUStatisticMean        = errorState == OnlineCalculatorError.None ? PrognosisTrainingTheilsUStatisticMean : double.PositiveInfinity;
        }
Beispiel #5
0
        protected void CalculateTimeSeriesResults()
        {
            OnlineCalculatorError errorState;
            double trainingMean = ProblemData.TrainingIndices.Any() ? ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndices).Average() : double.NaN;
            var    meanModel    = new ConstantModel(trainingMean);

            double alpha, beta;
            IEnumerable <double> trainingStartValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndices.Select(r => r - 1).Where(r => r > 0)).ToList();

            OnlineLinearScalingParameterCalculator.Calculate(ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndices.Where(x => x > 0)), trainingStartValues, out alpha, out beta, out errorState);
            var AR1model = new TimeSeriesPrognosisAutoRegressiveModel(ProblemData.TargetVariable, new double[] { beta }, alpha);


            #region Calculate training quality measures
            if (ProblemData.TrainingIndices.Any())
            {
                IEnumerable <double> trainingTargetValues         = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndices).ToList();
                IEnumerable <double> trainingEstimatedValues      = EstimatedTrainingValues.ToList();
                IEnumerable <double> trainingMeanModelPredictions = meanModel.GetEstimatedValues(ProblemData.Dataset, ProblemData.TrainingIndices).ToList();
                IEnumerable <double> trainingAR1ModelPredictions  = AR1model.GetEstimatedValues(ProblemData.Dataset, ProblemData.TrainingIndices).ToList();

                TrainingDirectionalSymmetry         = OnlineDirectionalSymmetryCalculator.Calculate(trainingTargetValues.First(), trainingTargetValues, trainingEstimatedValues, out errorState);
                TrainingDirectionalSymmetry         = errorState == OnlineCalculatorError.None ? TrainingDirectionalSymmetry : 0.0;
                TrainingWeightedDirectionalSymmetry = OnlineWeightedDirectionalSymmetryCalculator.Calculate(trainingTargetValues.First(), trainingTargetValues, trainingEstimatedValues, out errorState);
                TrainingWeightedDirectionalSymmetry = errorState == OnlineCalculatorError.None ? TrainingWeightedDirectionalSymmetry : 0.0;
                TrainingTheilsUStatisticAR1         = OnlineTheilsUStatisticCalculator.Calculate(trainingTargetValues.First(), trainingTargetValues, trainingAR1ModelPredictions, trainingEstimatedValues, out errorState);
                TrainingTheilsUStatisticAR1         = errorState == OnlineCalculatorError.None ? TrainingTheilsUStatisticAR1 : double.PositiveInfinity;
                TrainingTheilsUStatisticMean        = OnlineTheilsUStatisticCalculator.Calculate(trainingTargetValues.First(), trainingTargetValues, trainingMeanModelPredictions, trainingEstimatedValues, out errorState);
                TrainingTheilsUStatisticMean        = errorState == OnlineCalculatorError.None ? TrainingTheilsUStatisticMean : double.PositiveInfinity;
            }
            #endregion

            #region Calculate test quality measures
            if (ProblemData.TestIndices.Any())
            {
                IEnumerable <double> testTargetValues         = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TestIndices).ToList();
                IEnumerable <double> testEstimatedValues      = EstimatedTestValues.ToList();
                IEnumerable <double> testMeanModelPredictions = meanModel.GetEstimatedValues(ProblemData.Dataset, ProblemData.TestIndices).ToList();
                IEnumerable <double> testAR1ModelPredictions  = AR1model.GetEstimatedValues(ProblemData.Dataset, ProblemData.TestIndices).ToList();

                TestDirectionalSymmetry         = OnlineDirectionalSymmetryCalculator.Calculate(testTargetValues.First(), testTargetValues, testEstimatedValues, out errorState);
                TestDirectionalSymmetry         = errorState == OnlineCalculatorError.None ? TestDirectionalSymmetry : 0.0;
                TestWeightedDirectionalSymmetry = OnlineWeightedDirectionalSymmetryCalculator.Calculate(testTargetValues.First(), testTargetValues, testEstimatedValues, out errorState);
                TestWeightedDirectionalSymmetry = errorState == OnlineCalculatorError.None ? TestWeightedDirectionalSymmetry : 0.0;
                TestTheilsUStatisticAR1         = OnlineTheilsUStatisticCalculator.Calculate(testTargetValues.First(), testTargetValues, testAR1ModelPredictions, testEstimatedValues, out errorState);
                TestTheilsUStatisticAR1         = errorState == OnlineCalculatorError.None ? TestTheilsUStatisticAR1 : double.PositiveInfinity;
                TestTheilsUStatisticMean        = OnlineTheilsUStatisticCalculator.Calculate(testTargetValues.First(), testTargetValues, testMeanModelPredictions, testEstimatedValues, out errorState);
                TestTheilsUStatisticMean        = errorState == OnlineCalculatorError.None ? TestTheilsUStatisticMean : double.PositiveInfinity;
            }
            #endregion
        }
    public static double Calculate(IEnumerable<double> startValues, IEnumerable<IEnumerable<double>> actualContinuations, IEnumerable<IEnumerable<double>> predictedContinuations, out OnlineCalculatorError errorState) {
      IEnumerator<double> startValueEnumerator = startValues.GetEnumerator();
      IEnumerator<IEnumerable<double>> actualContinuationsEnumerator = actualContinuations.GetEnumerator();
      IEnumerator<IEnumerable<double>> predictedContinuationsEnumerator = predictedContinuations.GetEnumerator();
      OnlineWeightedDirectionalSymmetryCalculator calculator = new OnlineWeightedDirectionalSymmetryCalculator();

      // always move forward all enumerators (do not use short-circuit evaluation!)
      while (startValueEnumerator.MoveNext() & actualContinuationsEnumerator.MoveNext() & predictedContinuationsEnumerator.MoveNext()) {
        calculator.Add(startValueEnumerator.Current, actualContinuationsEnumerator.Current, predictedContinuationsEnumerator.Current);
        if (calculator.ErrorState != OnlineCalculatorError.None) break;
      }

      // check if all enumerators are at the end to make sure both enumerations have the same length
      if (calculator.ErrorState == OnlineCalculatorError.None &&
          (startValueEnumerator.MoveNext() || actualContinuationsEnumerator.MoveNext() || predictedContinuationsEnumerator.MoveNext())) {
        throw new ArgumentException("Number of elements in startValues, actualContinuations and estimatedValues predictedContinuations doesn't match.");
      } else {
        errorState = calculator.ErrorState;
        return calculator.WeightedDirectionalSymmetry;
      }
    }
 public static double Calculate(double startValue, IEnumerable<double> actualContinuation, IEnumerable<double> predictedContinuation, out OnlineCalculatorError errorState) {
   OnlineWeightedDirectionalSymmetryCalculator calculator = new OnlineWeightedDirectionalSymmetryCalculator();
   calculator.Add(startValue, actualContinuation, predictedContinuation);
   errorState = calculator.ErrorState;
   return calculator.WeightedDirectionalSymmetry;
 }