internal void setFrictionConstraintImpulse( btSolverConstraint solverConstraint,
																				btSolverBody bodyA, btSolverBody bodyB,
																		 btManifoldPoint cp, btContactSolverInfo infoGlobal )
		{


			btRigidBody rb0 = bodyA.m_originalBody;
			btRigidBody rb1 = bodyB.m_originalBody;

			{
				btSolverConstraint frictionConstraint1 = m_tmpSolverContactFrictionConstraintPool[solverConstraint.m_frictionIndex];
				if( ( infoGlobal.m_solverMode & btSolverMode.SOLVER_USE_WARMSTARTING ) != 0 )
				{
					frictionConstraint1.m_appliedImpulse = cp.m_appliedImpulseLateral1 * infoGlobal.m_warmstartingFactor;
					btScalar.Dbg( "New Applied source is " + cp.m_appliedImpulseLateral1.ToString( "g17" ) );
					if( rb0 != null )
					{
						btVector3 tmp; frictionConstraint1.m_contactNormal1.Mult2( ref rb0.m_linearFactor, rb0.getInvMass(), out tmp );
						bodyA.applyImpulse( ref tmp, ref frictionConstraint1.m_angularComponentA, frictionConstraint1.m_appliedImpulse );
					}
					if( rb1 != null )
					{
						btVector3 tmp; frictionConstraint1.m_contactNormal2.Mult2( ref rb1.m_linearFactor, -rb1.getInvMass(), out tmp );
						btVector3 tmp2; frictionConstraint1.m_angularComponentB.Invert( out tmp2 );
						bodyB.applyImpulse( ref tmp, ref tmp2, -(double)frictionConstraint1.m_appliedImpulse );
					}
				}
				else
				{
					frictionConstraint1.m_appliedImpulse = 0;
				}
			}

			if( ( infoGlobal.m_solverMode & btSolverMode.SOLVER_USE_2_FRICTION_DIRECTIONS ) != 0 )
			{
				btSolverConstraint frictionConstraint2 = m_tmpSolverContactFrictionConstraintPool[solverConstraint.m_frictionIndex + 1];
				if( ( infoGlobal.m_solverMode & btSolverMode.SOLVER_USE_WARMSTARTING ) != 0 )
				{
					frictionConstraint2.m_appliedImpulse = cp.m_appliedImpulseLateral2 * infoGlobal.m_warmstartingFactor;
					if( rb0 != null )
					{
						btVector3 tmp; frictionConstraint2.m_contactNormal1.Mult( rb0.getInvMass(), out tmp );

						bodyA.applyImpulse( ref tmp, ref frictionConstraint2.m_angularComponentA, frictionConstraint2.m_appliedImpulse );
					}
					if( rb1 != null )
					{
						btVector3 tmp; frictionConstraint2.m_contactNormal2.Mult( -rb1.getInvMass(), out tmp );
						btVector3 tmp2; frictionConstraint2.m_angularComponentB.Invert( out tmp2 );
						bodyB.applyImpulse( ref tmp, ref tmp2, -(double)frictionConstraint2.m_appliedImpulse );
					}
				}
				else
				{
					frictionConstraint2.m_appliedImpulse = 0;
				}
			}
		}
		///This is the scalar reference implementation of solving a single constraint row, the innerloop of the Projected Gauss Seidel/Sequential Impulse constraint solver
		///Below are optional SSE2 and SSE4/FMA3 versions. We assume most hardware has SSE2. For SSE4/FMA3 we perform a CPU feature check.
		public static double gResolveSingleConstraintRowGeneric_scalar_reference( btSolverBody body1, btSolverBody body2, btSolverConstraint c )
		{
			double deltaImpulse = c.m_rhs - (double)( c.m_appliedImpulse ) * c.m_cfm;
			double deltaVel1Dotn = c.m_contactNormal1.dot( ref body1.m_deltaLinearVelocity )
				+ c.m_relpos1CrossNormal.dot( ref body1.m_deltaAngularVelocity );
			double deltaVel2Dotn = c.m_contactNormal2.dot( ref body2.m_deltaLinearVelocity )
				+ c.m_relpos2CrossNormal.dot( ref body2.m_deltaAngularVelocity );

			//	double delta_rel_vel	=	deltaVel1Dotn-deltaVel2Dotn;
			deltaImpulse -= deltaVel1Dotn * c.m_jacDiagABInv;
			deltaImpulse -= deltaVel2Dotn * c.m_jacDiagABInv;

			double sum = (double)( c.m_appliedImpulse ) + deltaImpulse;
			if( sum < c.m_lowerLimit )
			{
				deltaImpulse = c.m_lowerLimit - c.m_appliedImpulse;
				c.m_appliedImpulse = c.m_lowerLimit;
			}
			else if( sum > c.m_upperLimit )
			{
				deltaImpulse = c.m_upperLimit - c.m_appliedImpulse;
				c.m_appliedImpulse = c.m_upperLimit;
			}
			else
			{
				c.m_appliedImpulse = sum;
			}
			btScalar.Dbg( "Constraint applied impulse is " + c.m_appliedImpulse.ToString( "g17" ) );
			btVector3 mass, val;
			body1.internalGetInvMass( out mass );
			mass.Mult( ref c.m_contactNormal1, out val );
			body1.applyImpulse( ref val, ref c.m_angularComponentA, deltaImpulse );
			body2.internalGetInvMass( out mass );
			mass.Mult( ref c.m_contactNormal2, out val );
			body2.applyImpulse( ref val, ref c.m_angularComponentB, deltaImpulse );

			return deltaImpulse;
		}
		internal void setupRollingFrictionConstraint( btSolverConstraint solverConstraint, ref btVector3 normalAxis1
						, btSolverBody solverBodyA, btSolverBody solverBodyB,
											btManifoldPoint cp, ref btVector3 rel_pos1, ref btVector3 rel_pos2,
											btCollisionObject colObj0, btCollisionObject colObj1, double relaxation,
											double desiredVelocity = 0, double cfmSlip = 0.0 )

		{
			btVector3 normalAxis = btVector3.Zero;


			solverConstraint.m_contactNormal1 = normalAxis;
			normalAxis.Invert( out solverConstraint.m_contactNormal2 );
			//btSolverBody solverBodyA = m_tmpSolverBodyPool[solverBodyIdA];
			//btSolverBody solverBodyB = m_tmpSolverBodyPool[solverBodyIdB];

			btRigidBody body0 = solverBodyA.m_originalBody;
			btRigidBody body1 = solverBodyB.m_originalBody;

			solverConstraint.m_solverBodyA = solverBodyA;
			solverConstraint.m_solverBodyB = solverBodyB;

			solverConstraint.m_friction = cp.m_combinedRollingFriction;
			solverConstraint.m_originalContactPoint = null;

			solverConstraint.m_appliedImpulse = 0;
			solverConstraint.m_appliedPushImpulse = 0;

			btVector3 iMJaA;
			btVector3 iMJaB;
			{
				btVector3 ftorqueAxis1; normalAxis1.Invert( out ftorqueAxis1 );
				solverConstraint.m_relpos1CrossNormal = ftorqueAxis1;
				if( body0 != null )
				{
					body0.m_invInertiaTensorWorld.Apply( ref ftorqueAxis1, out iMJaA );
					iMJaA.Mult( ref body0.m_angularFactor, out solverConstraint.m_angularComponentA );
				}
				else
					iMJaA = btVector3.Zero;
				//solverConstraint.m_angularComponentA = body0 != null ? body0.getInvInertiaTensorWorld() * ftorqueAxis1 * body0.getAngularFactor() : btVector3.Zero;
			}
			{
				btVector3 ftorqueAxis1 = normalAxis1;
				solverConstraint.m_relpos2CrossNormal = ftorqueAxis1;
				if( body1 != null )
				{
					body1.m_invInertiaTensorWorld.Apply( ref ftorqueAxis1, out iMJaB );
					iMJaB.Mult( ref body1.m_angularFactor, out solverConstraint.m_angularComponentB );
				}
				else
					iMJaB = btVector3.Zero;
				//solverConstraint.m_angularComponentB = body1 != null ? body1.getInvInertiaTensorWorld() * ftorqueAxis1 * body1.getAngularFactor() : btVector3.Zero;
			}


			{
				//btVector3 iMJaA = body0 != null ? body0.getInvInertiaTensorWorld() * solverConstraint.m_relpos1CrossNormal : btVector3.Zero;
				//btVector3 iMJaB = body1 != null ? body1.getInvInertiaTensorWorld() * solverConstraint.m_relpos2CrossNormal : btVector3.Zero;
				double sum = 0;
				sum += iMJaA.dot( ref solverConstraint.m_relpos1CrossNormal );
				sum += iMJaB.dot( ref solverConstraint.m_relpos2CrossNormal );
				btScalar.Dbg( "m_jacDiagABInv 2 set to " + ( btScalar.BT_ONE / sum ).ToString( "g17" ) );
				solverConstraint.m_jacDiagABInv = btScalar.BT_ONE / sum;
			}

			{


				double rel_vel;
				double vel1Dotn;
				double vel2Dotn;
				//double vel1Dotn = solverConstraint.m_contactNormal1.dot( body0 != null ? solverBodyA.m_linearVelocity + solverBodyA.m_externalForceImpulse : btVector3.Zero )
				//	+ solverConstraint.m_relpos1CrossNormal.dot( body0 != null ? solverBodyA.m_angularVelocity : btVector3.Zero );

				//double vel2Dotn = solverConstraint.m_contactNormal2.dot( body1 != null ? solverBodyB.m_linearVelocity + solverBodyB.m_externalForceImpulse : btVector3.Zero )
				//	+ solverConstraint.m_relpos2CrossNormal.dot( body1 != null ? solverBodyB.m_angularVelocity : btVector3.Zero );
				if( body0 != null )
					vel1Dotn = solverConstraint.m_contactNormal1.dotAdded( ref solverBodyA.m_linearVelocity, ref solverBodyA.m_externalForceImpulse )
						+ solverConstraint.m_relpos1CrossNormal.dot( ref solverBodyA.m_angularVelocity );
				else
					vel1Dotn = 0;
				if( body1 != null )
					vel2Dotn = solverConstraint.m_contactNormal1.dotAdded( ref solverBodyB.m_linearVelocity, ref solverBodyB.m_externalForceImpulse )
						+ solverConstraint.m_relpos1CrossNormal.dot( ref solverBodyB.m_angularVelocity );
				else
					vel2Dotn = 0;

				rel_vel = vel1Dotn + vel2Dotn;

				//		double positionalError = 0;

				double velocityError = desiredVelocity - rel_vel;
				double velocityImpulse = velocityError * ( solverConstraint.m_jacDiagABInv );
				solverConstraint.m_rhs = velocityImpulse;
				btScalar.Dbg( "Constraint 2 m_rhs " + solverConstraint.m_rhs.ToString( "g17" ) );
				solverConstraint.m_cfm = cfmSlip;
				solverConstraint.m_lowerLimit = -solverConstraint.m_friction;
				solverConstraint.m_upperLimit = solverConstraint.m_friction;

			}
		}
		internal void setupContactConstraint( btSolverConstraint solverConstraint,
											btSolverBody bodyA, btSolverBody bodyB,
											btManifoldPoint cp, btContactSolverInfo infoGlobal,
											out double relaxation,
											ref btVector3 rel_pos1, ref btVector3 rel_pos2 )
		{

			//	ref btVector3 pos1 = cp.getPositionWorldOnA();
			//	ref btVector3 pos2 = cp.getPositionWorldOnB();

			btRigidBody rb0 = bodyA.m_originalBody;
			btRigidBody rb1 = bodyB.m_originalBody;

			//			btVector3 rel_pos1 = pos1 - colObj0.getWorldTransform().getOrigin();
			//			btVector3 rel_pos2 = pos2 - colObj1.getWorldTransform().getOrigin();
			//rel_pos1 = pos1 - bodyA.getWorldTransform().getOrigin();
			//rel_pos2 = pos2 - bodyB.getWorldTransform().getOrigin();

			relaxation = 1;

			btVector3 torqueAxis0; rel_pos1.cross( ref cp.m_normalWorldOnB, out torqueAxis0 );
			btVector3 tmp;
			//solverConstraint.m_angularComponentA = rb0 != null ? rb0.m_invInertiaTensorWorld * torqueAxis0 * rb0.getAngularFactor() : btVector3.Zero;
			if( rb0 != null )
			{
				rb0.m_invInertiaTensorWorld.Apply( ref torqueAxis0, out tmp );
				tmp.Mult( ref rb0.m_angularFactor, out solverConstraint.m_angularComponentA );
			}
			else
				solverConstraint.m_angularComponentA = btVector3.Zero;

			btVector3 torqueAxis1; rel_pos2.cross( ref cp.m_normalWorldOnB, out torqueAxis1 );
			torqueAxis1.Invert( out torqueAxis1 );
			//solverConstraint.m_angularComponentB = rb1 != null ? rb1.m_invInertiaTensorWorld * -torqueAxis1 * rb1.getAngularFactor() : btVector3.Zero;
			if( rb1 != null )
			{
				rb1.m_invInertiaTensorWorld.Apply( ref torqueAxis1, out tmp );
				tmp.Mult( ref rb1.m_angularFactor, out solverConstraint.m_angularComponentB );
			}
			else
				solverConstraint.m_angularComponentB = btVector3.Zero;

			{
#if COMPUTE_IMPULSE_DENOM
					double denom0 = rb0.computeImpulseDenominator(pos1,cp.m_normalWorldOnB);
					double denom1 = rb1.computeImpulseDenominator(pos2,cp.m_normalWorldOnB);
#else
				btVector3 vec;
				double denom0 = 0;
				double denom1 = 0;
				if( rb0 != null )
				{
					( solverConstraint.m_angularComponentA ).cross( ref rel_pos1, out vec );
					denom0 = rb0.getInvMass() + cp.m_normalWorldOnB.dot( vec );
				}
				if( rb1 != null )
				{
					solverConstraint.m_angularComponentB.Invert( out tmp );
					tmp.cross( ref rel_pos2, out vec );
					denom1 = rb1.getInvMass() + cp.m_normalWorldOnB.dot( vec );
				}
#endif //COMPUTE_IMPULSE_DENOM

				double denom = relaxation / ( denom0 + denom1 );
				btScalar.Dbg( "m_jacDiagABInv 3 set to " + denom.ToString( "g17" ) );
				solverConstraint.m_jacDiagABInv = denom;
			}

			if( rb0 != null )
			{
				solverConstraint.m_contactNormal1 = cp.m_normalWorldOnB;
				solverConstraint.m_relpos1CrossNormal = torqueAxis0;
				btScalar.Dbg( "Torque Axis to relpos1 " + torqueAxis0 );
			}
			else
			{
				solverConstraint.m_contactNormal1 = btVector3.Zero;
				solverConstraint.m_relpos1CrossNormal = btVector3.Zero;
			}
			if( rb1 != null )
			{
				cp.m_normalWorldOnB.Invert( out solverConstraint.m_contactNormal2 );
				solverConstraint.m_relpos2CrossNormal = torqueAxis1;
				btScalar.Dbg( "Torque Axis to relpos2 " + torqueAxis1 );
			}
			else
			{
				solverConstraint.m_contactNormal2 = btVector3.Zero;
				solverConstraint.m_relpos2CrossNormal = btVector3.Zero;
			}

			double restitution = 0;
			double penetration = cp.getDistance() + infoGlobal.m_linearSlop;

			{
				btVector3 vel1, vel2;

				vel1 = rb0 != null ? rb0.getVelocityInLocalPoint( ref rel_pos1 ) : btVector3.Zero;
				vel2 = rb1 != null ? rb1.getVelocityInLocalPoint( ref rel_pos2 ) : btVector3.Zero;

				//			btVector3 vel2 = rb1 ? rb1.getVelocityInLocalPoint(rel_pos2) : btVector3(0,0,0);
				btVector3 vel; vel1.Sub( ref vel2, out vel );
				double rel_vel = cp.m_normalWorldOnB.dot( ref vel );



				solverConstraint.m_friction = cp.m_combinedFriction;


				restitution = restitutionCurve( rel_vel, cp.m_combinedRestitution );
				if( restitution <= btScalar.BT_ZERO )
				{
					restitution = 0;
				};
			}


			///warm starting (or zero if disabled)
			if( ( infoGlobal.m_solverMode & btSolverMode.SOLVER_USE_WARMSTARTING ) != 0 )
			{
				solverConstraint.m_appliedImpulse = cp.m_appliedImpulse * infoGlobal.m_warmstartingFactor;
				if( rb0 != null )
				{
					solverConstraint.m_contactNormal1.Mult2( ref bodyA.m_invMass, ref rb0.m_linearFactor, out tmp );
					bodyA.applyImpulse( ref tmp, ref solverConstraint.m_angularComponentA, solverConstraint.m_appliedImpulse );
				}
				if( rb1 != null )
				{
					solverConstraint.m_contactNormal2.Mult2( ref rb1.m_linearFactor, ref bodyB.m_invMass, out tmp );
					tmp.Invert( out tmp );
					btVector3 tmp2; solverConstraint.m_angularComponentB.Invert( out tmp2 );
					bodyB.applyImpulse( ref tmp, ref tmp2, -(double)solverConstraint.m_appliedImpulse );
				}
			}
			else
			{
				solverConstraint.m_appliedImpulse = 0;
			}

			solverConstraint.m_appliedPushImpulse = 0;

			{

				btVector3 externalForceImpulseA = bodyA.m_originalBody != null ? bodyA.m_externalForceImpulse : btVector3.Zero;
				btVector3 externalTorqueImpulseA = bodyA.m_originalBody != null ? bodyA.m_externalTorqueImpulse : btVector3.Zero;
				btVector3 externalForceImpulseB = bodyB.m_originalBody != null ? bodyB.m_externalForceImpulse : btVector3.Zero;
				btVector3 externalTorqueImpulseB = bodyB.m_originalBody != null ? bodyB.m_externalTorqueImpulse : btVector3.Zero;

				btScalar.Dbg( "external torque impulses " + externalTorqueImpulseA + externalTorqueImpulseB );

				double vel1Dotn = solverConstraint.m_contactNormal1.dotAdded( ref bodyA.m_linearVelocity, ref externalForceImpulseA )
					+ solverConstraint.m_relpos1CrossNormal.dotAdded( ref bodyA.m_angularVelocity, ref externalTorqueImpulseA );
				double vel2Dotn = solverConstraint.m_contactNormal2.dotAdded( ref bodyB.m_linearVelocity, ref externalForceImpulseB )
					+ solverConstraint.m_relpos2CrossNormal.dotAdded( ref bodyB.m_angularVelocity, ref externalTorqueImpulseB );
				double rel_vel = vel1Dotn + vel2Dotn;

				double positionalError = 0;
				double velocityError = restitution - rel_vel;// * damping;


				double erp = infoGlobal.m_erp2;
				if( !infoGlobal.m_splitImpulse || ( penetration > infoGlobal.m_splitImpulsePenetrationThreshold ) )
				{
					erp = infoGlobal.m_erp;
				}

				if( penetration > 0 )
				{
					positionalError = 0;

					velocityError -= penetration / infoGlobal.m_timeStep;
				}
				else
				{
					positionalError = -penetration * erp / infoGlobal.m_timeStep;
				}

				double penetrationImpulse = positionalError * solverConstraint.m_jacDiagABInv;
				double velocityImpulse = velocityError * solverConstraint.m_jacDiagABInv;

				if( !infoGlobal.m_splitImpulse || ( penetration > infoGlobal.m_splitImpulsePenetrationThreshold ) )
				{
					//combine position and velocity into rhs
					solverConstraint.m_rhs = penetrationImpulse + velocityImpulse;//-solverConstraint.m_contactNormal1.dot(bodyA.m_externalForce*bodyA.m_invMass-bodyB.m_externalForce/bodyB.m_invMass)*solverConstraint.m_jacDiagABInv;
					btScalar.Dbg( "Constraint 3 m_rhs " + solverConstraint.m_rhs.ToString( "g17" ) );
					solverConstraint.m_rhsPenetration = 0;

				}
				else
				{
					//split position and velocity into rhs and m_rhsPenetration
					solverConstraint.m_rhs = velocityImpulse;
					btScalar.Dbg( "Constraint 4 m_rhs " + solverConstraint.m_rhs.ToString( "g17" ) );
					solverConstraint.m_rhsPenetration = penetrationImpulse;
				}
				solverConstraint.m_cfm = 0;
				solverConstraint.m_lowerLimit = 0;
				solverConstraint.m_upperLimit = 1e10f;
			}




		}
		protected void resolveSplitPenetrationSIMD( btSolverBody body1, btSolverBody body2, btSolverConstraint c )
		{
			resolveSplitPenetrationImpulseCacheFriendly( body1, body2, c );
		}
		internal void setupFrictionConstraint( btSolverConstraint solverConstraint, ref btVector3 normalAxis
			//, int solverBodyIdA, int solverBodyIdB
			, btSolverBody solverBodyA, btSolverBody solverBodyB
			, btManifoldPoint cp, ref btVector3 rel_pos1, ref btVector3 rel_pos2, btCollisionObject colObj0, btCollisionObject colObj1, double relaxation, double desiredVelocity = 0, double cfmSlip = 0.0 )
		{
			//btSolverBody solverBodyA = m_tmpSolverBodyPool[solverBodyIdA];
			//btSolverBody solverBodyB = m_tmpSolverBodyPool[solverBodyIdB];

			btRigidBody body0 = solverBodyA.m_originalBody;
			btRigidBody body1 = solverBodyB.m_originalBody;

			solverConstraint.m_solverBodyA = solverBodyA;
			solverConstraint.m_solverBodyB = solverBodyB;

			solverConstraint.m_friction = cp.m_combinedFriction;
			solverConstraint.m_originalContactPoint = null;

			solverConstraint.m_appliedImpulse = 0;
			solverConstraint.m_appliedPushImpulse = 0;

			if( body0 != null )
			{
				solverConstraint.m_contactNormal1 = normalAxis;
				rel_pos1.cross( ref solverConstraint.m_contactNormal1, out solverConstraint.m_relpos1CrossNormal );
				btVector3 tmp;
				body0.m_invInertiaTensorWorld.Apply( ref solverConstraint.m_relpos1CrossNormal, out tmp );
				tmp.Mult( ref body0.m_angularFactor, out solverConstraint.m_angularComponentA );
			}
			else
			{
				solverConstraint.m_contactNormal1.setZero();
				solverConstraint.m_relpos1CrossNormal.setZero();
				solverConstraint.m_angularComponentA.setZero();
			}

			if( body1 != null )
			{
				normalAxis.Invert( out solverConstraint.m_contactNormal2 );
				rel_pos2.cross( ref solverConstraint.m_contactNormal2, out solverConstraint.m_relpos2CrossNormal );
				btVector3 tmp;
				body1.m_invInertiaTensorWorld.Apply( ref solverConstraint.m_relpos2CrossNormal, out tmp );
				tmp.Mult( ref body1.m_angularFactor, out solverConstraint.m_angularComponentB );
			}
			else
			{
				solverConstraint.m_contactNormal2 = btVector3.Zero;
				solverConstraint.m_relpos2CrossNormal = btVector3.Zero;
				solverConstraint.m_angularComponentB = btVector3.Zero;
			}

			{
				btVector3 vec;
				double denom0 = 0;
				double denom1 = 0;
				if( body0 != null )
				{
					solverConstraint.m_angularComponentA.cross( ref rel_pos1, out vec );
					denom0 = body0.getInvMass() + normalAxis.dot( ref vec );
				}
				if( body1 != null )
				{
					btVector3 tmp;
					solverConstraint.m_angularComponentB.Invert( out tmp );
					tmp.cross( ref rel_pos2, out vec );
					denom1 = body1.getInvMass() + normalAxis.dot( ref vec );
				}
				double denom = relaxation / ( denom0 + denom1 );
				btScalar.Dbg( "m_jacDiagABInv 1 set to " + denom.ToString( "g17" ) );
				solverConstraint.m_jacDiagABInv = denom;
			}

			{


				double rel_vel;
				double vel1Dotn;
				double vel2Dotn;
				//double vel1Dotn = solverConstraint.m_contactNormal1.dot( body0 != null ? solverBodyA.m_linearVelocity + solverBodyA.m_externalForceImpulse : btVector3.Zero )
				//	+ solverConstraint.m_relpos1CrossNormal.dot( body0 != null ? solverBodyA.m_angularVelocity : btVector3.Zero );
				if( body0 != null )
					vel1Dotn = solverConstraint.m_contactNormal1.dotAdded( ref solverBodyA.m_linearVelocity, ref solverBodyA.m_externalForceImpulse )
						+ solverConstraint.m_relpos1CrossNormal.dot( ref solverBodyA.m_angularVelocity );
				else
					vel1Dotn = 0;

				//double vel2Dotn = solverConstraint.m_contactNormal2.dot( body1 != null ? solverBodyB.m_linearVelocity + solverBodyB.m_externalForceImpulse : btVector3.Zero )
				//	+ solverConstraint.m_relpos2CrossNormal.dot( body1 != null ? solverBodyB.m_angularVelocity : btVector3.Zero );
				if( body1 != null )
					vel2Dotn = solverConstraint.m_contactNormal2.dotAdded( ref solverBodyB.m_linearVelocity, ref solverBodyB.m_externalForceImpulse )
						+ solverConstraint.m_relpos2CrossNormal.dot( ref solverBodyB.m_angularVelocity );
				else
					vel2Dotn = 0;


				rel_vel = vel1Dotn + vel2Dotn;

				//		double positionalError = 0;

				double velocityError = desiredVelocity - rel_vel;
				double velocityImpulse = velocityError * solverConstraint.m_jacDiagABInv;
				solverConstraint.m_rhs = velocityImpulse;
				btScalar.Dbg( "Constraint 1 m_rhs " + solverConstraint.m_rhs.ToString( "g17" ) );
				solverConstraint.m_rhsPenetration = 0;
				solverConstraint.m_cfm = cfmSlip;
				solverConstraint.m_lowerLimit = -solverConstraint.m_friction;
				solverConstraint.m_upperLimit = solverConstraint.m_friction;

			}
		}
		protected void resolveSplitPenetrationImpulseCacheFriendly(
				btSolverBody body1,
				btSolverBody body2,
				btSolverConstraint c )
		{
			if( c.m_rhsPenetration != 0 )
			{
				gNumSplitImpulseRecoveries++;
				double deltaImpulse = c.m_rhsPenetration - (double)( c.m_appliedPushImpulse ) * c.m_cfm;
				btVector3 tmplin, tmpang;
				body1.internalGetPushVelocity( out tmplin );
				body1.internalGetTurnVelocity( out tmpang );
				double deltaVel1Dotn = c.m_contactNormal1.dot( ref tmplin ) + c.m_relpos1CrossNormal.dot( ref tmpang );
				body2.internalGetPushVelocity( out tmplin );
				body2.internalGetTurnVelocity( out tmpang );
				double deltaVel2Dotn = c.m_contactNormal2.dot( ref tmplin ) + c.m_relpos2CrossNormal.dot( ref tmpang );

				deltaImpulse -= deltaVel1Dotn * c.m_jacDiagABInv;
				deltaImpulse -= deltaVel2Dotn * c.m_jacDiagABInv;
				double sum = (double)( c.m_appliedPushImpulse ) + deltaImpulse;
				if( sum < c.m_lowerLimit )
				{
					deltaImpulse = c.m_lowerLimit - c.m_appliedPushImpulse;
					c.m_appliedPushImpulse = c.m_lowerLimit;
				}
				else
				{
					c.m_appliedPushImpulse = sum;
				}
				btVector3 mass, val;
				if( !c.m_contactNormal1.isZero() && !c.m_angularComponentA.isZero() )
				{
					btScalar.Dbg( "push impulse setup from " + deltaImpulse.ToString( "g17" ) + " * " + c.m_contactNormal1.ToString() + " and " + c.m_angularComponentA.ToString() );
					body1.internalGetInvMass( out mass );
					mass.Mult( ref c.m_contactNormal1, out val );
					body1.applyPushImpulse( ref val, ref c.m_angularComponentA, deltaImpulse );
				}
				if( !c.m_contactNormal2.isZero() && !c.m_angularComponentB.isZero() )
				{
					btScalar.Dbg( "push impulse setup from " + deltaImpulse.ToString( "g17" ) + " * " + c.m_contactNormal2.ToString() + " and " + c.m_angularComponentB.ToString() );
					body2.internalGetInvMass( out mass );
					mass.Mult( ref c.m_contactNormal2, out val );
					body2.applyPushImpulse( ref val, ref c.m_angularComponentB, deltaImpulse );
				}
			}
		}
		protected double resolveSingleConstraintRowLowerLimit( btSolverBody body1, btSolverBody body2, btSolverConstraint c )
		{
			return gResolveSingleConstraintRowLowerLimit_scalar_reference( body1, body2, c );
		}
		protected double resolveSingleConstraintRowLowerLimitSIMD( btSolverBody body1, btSolverBody body2, btSolverConstraint c )
		{
#if USE_SIMD
	return m_resolveSingleConstraintRowLowerLimit(body1, body2, c);
#else
			return resolveSingleConstraintRowLowerLimit( body1, body2, c );
#endif
		}
		// Project Gauss Seidel or the equivalent Sequential Impulse
		protected double resolveSingleConstraintRowGeneric( btSolverBody body1, btSolverBody body2, btSolverConstraint c )
		{
			return gResolveSingleConstraintRowGeneric_scalar_reference( body1, body2, c );
		}
Beispiel #11
0
 internal static global::System.Runtime.InteropServices.HandleRef getCPtr(btSolverConstraint obj)
 {
     return((obj == null) ? new global::System.Runtime.InteropServices.HandleRef(null, global::System.IntPtr.Zero) : obj.swigCPtr);
 }